

Past Papers Nat 5 Chemistry

2019 Marking Scheme

Grade	Mark R	equired % andidates ashioving a	
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
Α	89+	71.2%	34.6%
В	74+	59.2%	21.6%
С	59+	47.2%	20.7%
D	44+	35.2%	15.9%
No award	<44	<35.2%	7.2%

Section:	Multiple Choice		Extended Ans	swer	Assignment	
Average Mark:	17.2	/25	41.5	/75	18.2	/25

20	2019 National 5 Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	LACCCANINA				
1	С	87	Rate = $\frac{\Delta Quantity}{\Delta Time} = \frac{5 \text{ cm}^3}{2 \text{ min}} = 2.5 \text{ cm}^3 \text{ min}^{-1}$				
2	В	64	Arme 2 mm				
3	С	90	☑A All elements in group 1 have 1 electron in outer shell ☑B All elements in group 2 have 2 electrons in outer shell ☑C All elements in group 7 have 7 electrons in outer shell ☑D All elements in group 8 (apart from Helium) have 8 electrons in outer shell				
4	D	72	■A This ion has a negative charge as it has more electrons than protons ■B This atom has no charge as it has equal numbers of protons and electrons ■C This atom has no charge as it has equal numbers of protons and electrons ■D This ion has a 2+ positive charge as it has 2 less electrons than protons				
5	В	76	 ☑A 40°C is above the critical temperature to CO₂ is a gas at 40°C ☑B NH₃ and CO₂ are compounds and have the highest critical temperatures ☑C Ammonia NH₃ has the highest critical temperature but is medium in mass ☑D Hydrogen H₂ is has a lower critical temperature than the noble gas Helium He 				
6	D	80	HF F2O CF4 PF3 F C Trigonal Pyramidal				
7	A	45	☑A Na ⁺ electron arrangement is 2,8 and O ²⁻ electron arrangement is 2,8 ☑B Li ⁺ electron arrangement is 2 and F ⁻ electron arrangement is 2,8 ☑C K ⁺ electron arrangement is 2,8,8 and Br ⁻ electron arrangement is 2,8,18,8 ☑D Mg ²⁺ electron arrangement is 2,8,8				
8	В	66	ΞA ionic copper sulphate in the solid state is a non-conductor ΞB ionic compounds will conduct is both the molten/liquid state and in solution ΞC ionic potassium nitrate in the solid state is a non-conductor ΞD hexane C_6H_{14} is a hydrocarbon and is covalent molecular and is a non-conductor				
9	A	58	☑A Calcium hydroxide is the solute as it is the solid which is dissolved ☑B Water is the solvent as it is the liquid doing the dissolving ☑C Calcium hydroxide solution is the solution with the solute dissolved in solvent ☑D Calcium hydroxide must be soluble if it dissolves				
10	В	73	gfm NH ₄ NO ₃ = (1x14)+(4x1)+(1x14)+(3x16) = 14+4+14+48 = 80 %N = $\frac{\text{mass of nitrogen}}{\text{gfm}} \times 100 = \frac{28}{80} \times 100 = 35\%$				
11	D	78	gfm 80 A The pH of an alkaline solution will decrease to pH=7 on dilution B The pH of an alkaline solution will decrease to pH=7 on dilution C The concentration of OH- ions decreases on dilution D The concentration of OH- ions decreases on dilution				

			☑A sodium oxide is a metal oxide (a type of base) and neutralises an acid to form water			
12 A	•	57	EB calcium chloride does not react with acids and is not a base			
	A		☑C potassium nitrate does not react with acids and is not a base			
			☑D ammonium sulphate does not react with acids and is not a base			
		☑A Cyclopropane C ₃ H ₆ has an isomer called propene C ₃ H ₆				
12	7	<i>(</i> E	■B But-1-ene C ₄ H ₈ has isomers including but-2-ene C ₄ H ₈			
13	U	65	$\boxtimes C$ Pentane C_5H_{12} has isomers including 2-methylbutane C_5H_{12} .			
		☑D Ethene C2H4 has no isomers				
			\blacksquare A Formula is C_6H_{12} so does not fit the general formula of alkanes C_nH_{2n+2}			
14		63	$lacktriangle$ B Formula is C_6H_{12} so does not fit the general formula of alkanes C_nH_{2n+2}			
7.4		03	$\square C$ C=C double bond between C_2 & C_3 (numbered from right) and methyl group on C_3			
			☑D C=C takes the lower number system so Pent-3-ene should be pent-2-ene			
			A Oct-2-ene produces two products on hydration (octan-2-ol and octan-3-ol)			
15	A	39	B Hex-3-ene produces one product on hydration (hexan-3-ol)			
10	/ \		EC But-2-ene produces one product on hydration (butan-2-ol)			
			ED Ethene produces one product on hydration (ethanol)			
		00	Reaction removes the C=O group and replaces it with a CH2 group.			
16	В	88	Alkane produced has 6 carbons in main chain and a methyl group on C_2			
			:. 2-methylhexane produced			
			Carboxylic Methanoic Ethanoic Propanoic Butanoic Pentanoic Hexanoic Heptanoic Octanoic			
	_		acid Acid <th< th=""></th<>			
17	В	65	Mass low			
_,			Melting Point low high			
			Boiling Point low			
			🗷 A Largest voltage = largest separation on electrochemical series (magnesium-silver)			
		00				
10		02	■B 2 nd Largest voltage = 2 nd largest separation on electrochemical series (zinc-silver)			
18	D	82	 ■ B 2nd Largest voltage = 2nd largest separation on electrochemical series (zinc-silver) ■ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) 			
18	D	82				
18	D	82	 ∑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ∑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ∑A Metal Z is more reactive than metal X as metals Z reacts with water 			
	D		 ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Z is more reactive than metal X as metals Z reacts with water ☑B Metal Y is least reactive metal as it is only one which had no reaction with acid 			
18	D C	82 66	 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal 			
	D		 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal ☑ D Metal Y is least reactive metal as it is only one which had no reaction with acid 			
	C		 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal 			
	D		 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal ☑ D Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ CH₃ H ☐ CH₃ H			
19	D	66	 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal ☑ D Metal Y is least reactive metal as it is only one which had no reaction with acid 			
	D		EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH ₃ H CH			
19	D C	66	 ☑ C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑ D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑ A Metal Z is more reactive than metal X as metals Z reacts with water ☑ B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ C Metal Y is least reactive metal and Metal Z is most reactive metal ☑ D Metal Y is least reactive metal as it is only one which had no reaction with acid ☑ CH₃ H ☐ CH₃ H			
19	D	66	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH ₃ H CH			
19	D C	66	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH ₃ H CH CH ₃ H CH CH CH CH CH CH CH CH CH			
19	C	66 47	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Z is more reactive than metal X as metals Z reacts with water EB Metal Y is least reactive metal as it is only one which had no reaction with acid CM Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H			
19	C C	66	 Image: Image: Im			
19	C C	66 47	 ☑C 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) ☑D Smallest voltage = smallest separation on electrochemical series (copper-silver) ☑A Metal Z is more reactive than metal X as metals Z reacts with water ☑B Metal Y is least reactive metal as it is only one which had no reaction with acid ☑C Metal Y is least reactive metal and Metal Z is most reactive metal ☑D Metal Y is least reactive metal as it is only one which had no reaction with acid ☐CH3 H ☐CH3 H			
19	D С С	66 47	EC 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H			
19 20 21	C C	664729	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Notation in a flame test B Ca²⁺ ions give a green colour in a flame test EB Ca²⁺ ions give a orange-red colour in a flame test			
19	C C A	66 47	EC 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H			
19 20 21	C C A	664729	EC 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH3 H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. B Nitrogen dioxide is soluble and would dissolve in water rather than collect. C Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²+ ions give a green colour in a flame test B C K⁺ ions give a lilac colour in a flame test Not ions give a yellow colour in a flame test Not ions give a yellow colour in a flame test			
19 20 21	C C A	664729	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²+ ions give a green colour in a flame test B Ca²+ ions give a orange-red colour in a flame test CK+ ions give a yellow colour in a flame test Na oxygen gas relights a glowing splint			
19 20 21 22		66472995	EC 3rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) EA Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal D Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H			
19 20 21	C C A D	664729	EC 3 rd Largest voltage = 3rd largest separation on electrochemical series (iron-silver) D Smallest voltage = smallest separation on electrochemical series (copper-silver) A Metal Z is more reactive than metal X as metals Z reacts with water B Metal Y is least reactive metal as it is only one which had no reaction with acid C Metal Y is least reactive metal and Metal Z is most reactive metal Metal Y is least reactive metal as it is only one which had no reaction with acid CH₃ H CO-polymer A Nitrogen dioxide is soluble and would dissolve in water rather than collect. Nitrogen dioxide is more dense than air and would collect in bottom of cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder Nitrogen dioxide is more dense than air and would escape out of the cylinder A Ba²+ ions give a green colour in a flame test B Ca²+ ions give a orange-red colour in a flame test CK+ ions give a yellow colour in a flame test Na oxygen gas relights a glowing splint			

24	C	66	☑A Addition reactions ☑B Combustion reaction ☑C Precipitation reacti ☑D Neutralisation rea	ions happen when ions form an insolu	chemicals sp able solid whe	olit up and react witl en solutions are addec	n ox d tog	ygen gether
25	В	77	Ag(aq) + NO3 (aq)	Split solo + Na ⁺ (aq) + B fy Spectator Ions	s and cancel $(r^{-}(aq) \rightarrow)$	ons Na ⁺ (aq) + NO ₃ ⁻ (aq) out Spectator Ions Na ⁺ (aq) + NO ₃ (aq)	+	
			Ag(aq)	+ B	sr⁻(aq) →			AgBr(s)

201	2019 National 5 Chemistry Marking Scheme					
Long Qu	Answer	Reasoning				
1a	network	SiO_2 is a covalent compound as both elements in the compound are non-metals. If the covalent compound has a high melting point it is a covalent network compounds. If it has a low melting and boiling point then it is covalent molecular.				
1b(i)	Isotope	Same Atomic number Number of protons Atomic number Different Number of neutrons				
1b(ii)	Different number of neutrons	Both isotopes of boron have 5 protons as they have an atomic number of 5. The ¹⁰ B isotope has 5 neutrons and the ¹¹ B isotope has 6 neutrons, calculated by number of neutrons = mass number – atomic number				
1b(iii)	More ¹¹ B isotope	The RAM (Relative Atomic Mass) is the average mass of the different isotopes. As the average is much closer to 11, there must be more ¹¹ B isotope in the sample.				
1c	120	24% of 500g = $\frac{24}{100}$ × 500 = 120g				
2a	Hydroxyl	O O O O O O O O O O				
2b	enzyme	Problem Solving: Retrieving information from a passage				
2c	calcium oxalate	Acids react with bases to form salts. Oxalic acid reacts with calcium ions to form the salt calcium oxalate				
2d	90	Lactic acid is the harmless product mentioned in the text. Formula of lactic acid = $C_3H_6O_3$ 1 mol = (3×12) + (6×1) + (3×16) = 36 + 6 + 48 = 90				
3a	One diagram from:	N N N N				
3b	Blue or purple	Ammonia NH ₃ gas dissolves in water to form alkaline ammonium hydroxide solution. Alkali on the damp/moist pH paper will turn blue/purple. $\begin{array}{ccccccccccccccccccccccccccccccccccc$				
3c(i)	Increase in temperature decrease in percentage	One From: As the temperature decreases as the temperature decreases. Cause and Effect: It must be a change of temperature and its effect on yield so "as yield of ammonia decreases, temperature gets higher" is incorrect				
3c(ii)	Graph showing:	1 mark One mark is awarded for a graph which shows points plotted rather than bars. 1 mark 1 mark				
3d(i)	Electrolysis and lithium nitride	Processes are in the circular boxes. Electrolysis is the circular box answer Chemicals are in the square boxes. Lithium nitride is formed from lithium and nitrogen.				

3d(ii)	One arrow drawn from:	water or lithium hydroxide water				
4a	nucleus	All nuclear reactions take	place in the r	lace in the nucleus.		
4b(i)	One answer from:	The time for half of th mass to decay			The time for half of the nuclei to decay	
4b(ii)	87.5%	II IIMe (davs)	ercentage Remaining 100% 50% 25%		ing after 24 days nave decayed by 24 days	
4b(iii)	Stays the same			on, temperature	and state of matter (solid,	
5a	Bromine decolourises		double bonds	and bromine is d	ecolourised in the process.	
5b(i)	Hydrogenation	The addition of hydrogen The addition of water acr				
5b(ii)	Chlorine	i e	joined across	the location of v	where the C=C double bond	
5b(iii)	Poly(propene)	If propene is the monome		•		
5c(i)	140					
5c(ii)	Answer to include:	1 mark: Cyclopentene has weaker (forces of attraction)				
		1 mark: Forces between				
6	Open Question:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension o the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates understanding involved, makin statement(s) v to the situatio problem is und	rk answer a reasonable of the chemistry ng some which are relevant on, showing that the lerstood.	Tractions mentioned 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	
6 7a	Open Question: Same/similar chemical properties and same general formula.	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension o the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Members of the same hor alkenes will decolourise b The general formula must fit the general formula C	Demonstrates understanding involved, makin statement(s) v to the situatio problem is und nologous serie romine solutio fit all membe H2n+2 e.g. met	termolecular att k answer a reasonable of the chemistry ng some which are relevant on, showing that the lerstood. s have the same n quickly. ers of the homoly hane CH4, ethan	Tactions mentioned 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. /similar properties e.g. all alkanes e C2H6, propane C3H8.	
	Same/similar chemical properties <u>and</u> same	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension o the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Members of the same hor alkenes will decolourise b The general formula must	Demonstrates understanding involved, makin statement(s) who to the situation problem is understanding involved, makin statement(s) who to the situation problem is understanding problem is understanding for all members. Here is a serie to the situation of the si	rk answer a reasonable of the chemistry ng some which are relevant in, showing that the lerstood. Is have the same in quickly. Its of the homolohane CH4, ethan the alkane fami	Tactions mentioned 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. /similar properties e.g. all alkanes e C2H6, propane C3H8.	
7a	Same/similar chemical properties <u>and</u> same general formula.	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension o the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Members of the same hor alkenes will decolourise b The general formula must fit the general formula C The hydrocarbon C25H52 r formula of alkanes of CnH	Demonstrates understanding involved, makin statement(s) who to the situation problem is understanding involved. The situation problem is understanding involved, makin statement(s) who to the situation problem is understanding involved in the situation in the si	termolecular attermolecular attermol	Tractions mentioned 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood. /similar properties e.g. all ogous series e.g. all alkanes e C2H6, propane C3H8. ly as it fits the general	

8a	Supernova	Problem Solving: Gathering information from a passage					
8b	beryllium aluminium silicon oxygen	Beryl is beryllium aluminium silicate. Silicate means both silicon and oxygen are also found in the compound.					
8c	$BeCl_2 + K \rightarrow Be + KCl$	Beryllium chloride + Potassium \rightarrow Beryllium + Potassium chloride Be Cl_2 + K \rightarrow Be + K Cl					
8d	Reduction	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
8e	¹ ₀ n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
9a	Exothermic	Type of Reaction Definition Exothermic Reaction which releases energy Endothermic Reaction which takes in energy from the surroundings					
9b(i)	0.05	heat energy = specific heat capacity \times mass \times change in Temperature $E_h = C \times m \times \Delta T$ $8.36 = 4.18 \times m \times 40$ $m = \frac{8.36}{4.18 \times 40} = 0.05 kg$					
9b(ii)	Both answers:	Copper is a better conductor of heat Lower heat loss to surroundings					
9c(i)	One answer from:	if the -OH group is at the end of alcohols an aldehyde is produced of alcohol an ketone is produced					
9c(ii)	H H H H H O H H H H H H	If OH is on the end carbon then an aldehyde is formed. Starting chemical is pentan-1-ol with -OH hydroxyl group on the end of molecule. Five carbon aldehyde is formed with C=O group on the end carbon.					
10a	Ion bridge or salt bride	The ion bridge is a piece of filter paper soaked in electrolyte. Electrolyte is a salt solution which provides the ions to complete the circuit and allow current to flow through the wires.					
10b(i)	Arrow through wires from right to left	Electrons flow through wires and ions flow through the solution. Electrons are generated in the reaction in beaker B: $ 2I^{(aq)} \longrightarrow I_{2(l)} + 2e^- $ Electrons flow through voltmeter to Beaker A and join up by the Fe $^{3+}$ ions $ Fe^{3+}_{(aq)} + e^- \longrightarrow Fe^{2+}_{(aq)} $					
10b(ii)	oxidation	$2I^{-}_{(aq)} \longrightarrow I_{2(l)} + 2e^{-}$					

10b(iii)	2Fe ³⁺ +2I ⁻ ↓ 2Fe ²⁺ +I ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	216 112	Cancel out electrons add equations together $2 extstyle extstyl$		
10c	Conducts electricity	Graphite has delocalised electrons that do not take part in the covalent bonding and are free to jump from atom to atom to allow electrical conduction.		
11a	Ca²+CO₃²-	Write down Valency below each element's symbol Ca CO ₃ Put in Cross-over Arrows Garage CO ₃ Follow arrows to get formula Ca ₂ (CO ₃) ₂ Cancel Down		
		2 2 2 2 2 CaCO ₃		
11b	propanoic acid	acid + metal → salt + water + dioxide propanoic + calcium → carbon acid + carbonate → propanoate + water + dioxide		
11c	One answer from:	no more solid reacts/ solid remains/is left a gas is no longer produced until it no longer reacts (at bottom of the beaker) no more fizzing/bubbling calcium carbonate left no more neutral/neutralised with a (at the bottom) calcium carbonate reacts description of testing pH.		
11d	Filtration	Filtration is needed to separate the unreacted calcium carbonate from the products. The		
110	Evaporation	residue of filtration is calcium propanoate solution. The solid propanoate is recovered by evaporating the water in the solution using an evaporating basin and a Bunsen burner.		
12a(i)	standard	A standard solution is a solution whose concentration is accurately know. It can then be used to work out the concentration of another solution with which it reacts with.		
12a(ii)	21.2	n o. of mol = v olume × c oncentration = 0.2litres × $1_{\text{mol}} t^{-1}$ = 0.2mol gfm Na ₂ CO ₃ = (2×23)+(1×12)+(3×16) = 46 + 12 + 48 = 106g mol ⁻¹ m ass = n o of mol × gfm = 0.2mol × 106 g mol ⁻¹ = 21.2g		
12b(i)	One answer from:	Move burette/ Reduce distance Use white Clamp the burette sodium carbonate (reading) between flask and tile/paper towards the to eye level burette		
12b(ii)	One answer from:	To show the end-point To show point of neutralisation To show completion of the reaction		
12b(iii)	concordant	Titrations using a burette allow exact volumes of solutions to be worked out. After the initial titration to allow a rough volume for the reaction to be found, the experiment is repeated exactly in a more accurate way to work out the exact volume of solution needed to completely react. This is repeated until two volumes within ±0.2cm³ of each other are achieved. These are described as concordant. The concordant volumes are averaged and the rough titre is ignored.		
		no. of mol Na ₂ CO ₃ = volume x concentration = 0.015 litres x 1 mol t^2 = 0.015 mol		
12b(iv)	Na ₂ CO ₃ + 2HCl \rightarrow 2NaCl + H ₂ O + CO ₂ 1mol 2mol 0.015mol 0.030mol concentration = $\frac{\text{no of moles}}{\text{volume}} = \frac{0.030_{\text{mol}}}{0.02_{\text{litres}}} = 1.5 \text{ mol l}^{-1}$			
13	Open Question:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the chemistry within the problem is understood.		